
Protecting User Data from Adversarial Servers and Clouds

Byoungyoung Lee
byoungyoung@purdue.edu

Abstract
Computation outsourcing to remote clouds is popular today. In particular, enterprises offload various computations
to cloud machines, including security critical machine learning workloads, to avoid costly and time-consuming
maintenance efforts. Such computation offloading raises many critical security concerns, primarily because data is now
being handled by potentially adversarial clouds. Intel SGX is one of the promising hardware-based trusted computing
solutions that has recently become available, and has strong potential to address aforementioned problems. Running a
program within a protective region, called an enclave, SGX guarantees confidentiality and integrity of the program
against all hardware and software components apart from the CPU itself.

However, we observe that SGX alone cannot guarantee the confidentiality of user data, especially if the user who
provides input and the program owner are two separate entities. More precisely, SGX only provides primitive security
guarantees on confidentiality and integrity of the program, and it does not restrict how the program handles the data
provided to it. Missing this security guarantee severely endangers the user’s privacy, because the program owner
can easily write their program to collect user’s data. This proposal proposes SECUREBOOTH, a system that provides
confidentiality on user data. SECUREBOOTH creates a software-enforced sandbox for a program running within an
enclave. SECUREBOOTH further ensures that all outgoing data transmissions from the program are encrypted in such a
way that it is only visible to the corresponding user. SECUREBOOTH designs software fault isolation (SFI) technique
for SGX, to secure each thread from others in an SGX environment. We plan to implement SECUREBOOTH based on
real SGX hardware, and evaluate it with real-world applications such as Hadoop, MySQL databases and Apache web
servers.

Problem Statement and Motivation
In the past several years, hardware-based trusted computing solutions have become a reality. Intel SGX is one such
solution that has recently become commoditized with the release of Intel Skylake processors. Intel SGX guarantees
confidentiality and integrity of a program without trusting the underlying software components including kernel,
hypervisor, and most hardware components except the CPU itself. One of the most attractive security applications of
SGX would be offloading computational workloads to untrusted or potentially adversarial clouds. Intel SGX supports
remote attestation on the program to be loaded on the cloud and further ensures that the runtime execution context of the
program is not visible to any entity (including privileged cloud hosts) outside its protective region, called an enclave.

However, we observe that Intel SGX alone cannot provide complete security, if the program (to be run on clouds)
and the data (to be processed by the program) are provided by two different parties. This is a common scenario
embodied in the client-server model where the server runs the program on the cloud and the client hands over the
data to the server. The server wishes to run its program as intended on the cloud and provide a service for users. At
the same time, the server might wish to collect user data, as data itself can be monetized in many different ways (i.e.,
personalized advertising, market research, etc.). In this setting, running native Intel SGX will protect the interests of
both parties against the adversarial clouds (or any other privileged attacker), but will fail to prevent an adversarial server
from collecting user data. This is largely because Intel SGX considers both parties as the same entity from a security
standpoint and therefore enforces the same security privilege for both parties.

As a result, an adversarial server can write its program such that it intentionally leaks the client’s data, since Intel
SGX does not perform checks on the runtime behavior of a program. A client, wary of such an attack, might attempt to
inspect the server’s program beforehand to check if it leaks data, but manually or formally verifying such a property is a
challenge in its own. Even worse, a server may not provide its implementation at all because of proprietary concerns,
which simply forbids inspection by a client. Based on the current trends, we find the severity of such issues is amplified
because of the sheer amount of personal data being circulated and processed by untrusted entities. Consider companies

like 23andMe or AncestryDNA, which provide DNA testing services and therefore, handle and process privacy-critical
DNA samples provided by users. Envisioning the future uses of SGX, database services can be equipped with the notion
of private information retrieval (PIR), which can protect the confidentiality of the query that the client sent. As another
example, companies want to setup Intrusion Detection Systems (IDS) with deep packet inspection (DPI) capabilities,
but at the same time guaranteeing the confidentiality of user’s network traffic. All of these services mentioned above
might promise in their service agreement that user data would not be collected (or propagated), but there is no existing
way to ascertain such a promise.

Approach
This proposal proposes SECUREBOOTH, a system that addresses this security conundrum in SGX environments.
SECUREBOOTH aims at protecting the confidentiality of a user’s data against an adversarial server. Towards this end,
SECUREBOOTH guarantees following security properties to safeguard the confidentiality of user data from adversarial
clouds: (P1) Server isolation: SECUREBOOTH should deny server writes to the outside of the enclave in order to
prevent it from leaking the user data; (P2) Thread isolation: SECUREBOOTH should isolate each thread of the server
from others to avoid information leakage between threads, as each thread runs for a different client; (P3) Encrypt
outgoing user data: SECUREBOOTH always has to encrypt all user’s data (including data having dependencies with
the user’s data), when it leaves the enclave. This encryption has to be performed using a session key such that only the
intended user can decrypt; and (P4) Complete Interaction Mediation: SECUREBOOTH has to completely mediate all
types of interactions originating from a target server program to stop potential side-channels from leaking information.

To ensure aforementioned four properties, we present a sandboxed execution environment, which runs inside an
enclave using the Software Fault Isolation (SFI) technique. By leveraging SFI, SECUREBOOTH limits the memory
access range of the server with the following two rules. First, it does not allow the server to directly write data outside
the enclave (P1). This prevents the server running within the enclave from disclosing enclave data (i.e., user private
data). Second, SECUREBOOTH provides a thread of the server with its own private region and it prohibits a thread from
reading/writing data to the memory region owned by another thread that runs in the same enclave (P2). This prevents a
thread from leaking the user private data handled by another thread. In addition, SECUREBOOTH provides a limited set
of runtime interfaces to allow the server to securely transmit service results or client data to the outside world. The
transmitted data is encrypted with the corresponding client’s session key so that only the client can decrypt it (P3). Also,
SECUREBOOTH mediates all interactions originating from the server through the runtime interface to prevent potential
side-channel attacks (P4).

We plan to implement SECUREBOOTH using LLVM and systematically integrate it with the Graphene Library
Operating system to demonstrate its practicality as far as running real-world applications is concerned. In addition,
SECUREBOOTH plans to adopt the following three components as well: (1) SSL/TLS to establish secure channels with
both server and users, (2) dynamic loader/linker to bootstrap enclave programs, and (3) disassembler validating the
permission and security enforcement. We will thoroughly evaluate SECUREBOOTH using real SGX hardware (i.e. Intel
Skylake) to understand the impact on security as well as performance under such a system.

Plan
We expect SECUREBOOTH can be implemented and evaluated within an year. Months 1-4: The student will develop
LLVM-based software fault isolation techniques for SECUREBOOTH. This phase involves two tasks: clearly identifying
unique memory layouts imposed by SGX and designing efficient instrumentation techniques for SGX. Month 5-8:
The student will develop runtime engines for SECUREBOOTH. Integrating SECUREBOOTH’s software fault isolation
techniques, this runtime engine performs secure encryption of outgoing user’s data. Month 9-12: In this phase, the
student will evaluate and test SECUREBOOTH. We target real-world applications in the end, including Hadoop, MySQL
databases, and Apache web servers.

Budget
PI plans to support one PhD student on this project for one year. The requested budget covers the student’s tuition,
salary, and graduate fee remissions. The total estimated budget is $75,101.

2

